Diagnosis of Heparin-induced Thrombocytopenia (HIT)

11th Hemostasis Seminar Instrumentation Laboratory / Werfen

Ramada Plaza by Wyndham, Bucharest, October 1, 2019

PD Dr Lars M. Asmis

Zentrum für perioperative Thrombose & Hämostase (ZPTH)

Diagnosis of HIT

Conflict of Interest Statement

- In the past 5 years I have received honoraria for advisory boards and/or research support from the following company: Axon Lab, Baxalta, Bayer, Boehringer Ingelheim, CSL Behring, Siemens, Glaxo Smith Kline, Novo Nordisk, Pfizer, Roche und Sanofi Aventis
- I was free regarding the choice of this presentation's content
- My activities follow GL of the SAMW and FAMH

Introduction: a voyage

1. View of the world

- > Map of the world of Hekataios of Millet (6 centur bc): world as disk
- Martin Waldseemüller and Matthias Ringmann: Worldmap, Globe und explaining text)

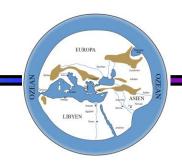
2. Starting point

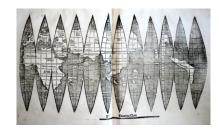
Where do I start from?

3. Goal

Where do I want to go?

4. Tools


> which resources do I have available


5. The trip itinerary

a predefined plan with starting- and endpoint that acknowledges avaliable resources and timeline (and potential alternatives)

6. Motivation

Why am I going on this voyage?

Introduction: HIT - a diagnostic journey

1. View of the world

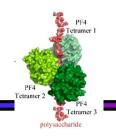
"model"

- pathogenesis of HIT: an immune mediated drug-induced thrombocytopenia
- beware of overdiagnosis
- 2. Starting point
- acquired thrombocytopenia
- 3. Goal
- > positive patient outcome: safe and efficient
- 4. Tools

4T score, antigenic and functional tests

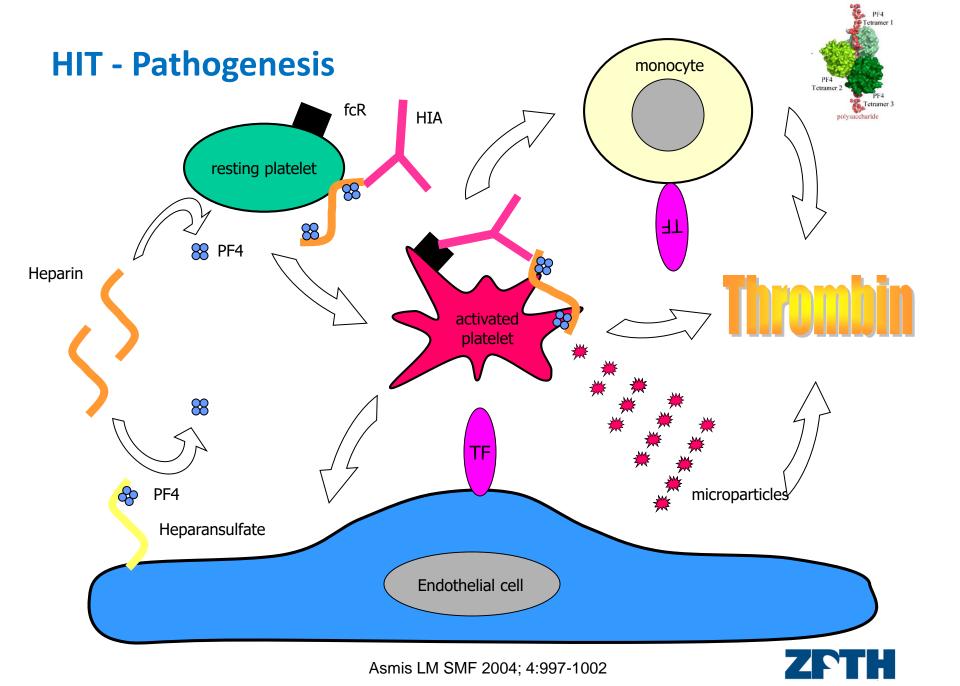
- patient history, clincial findings, laboratory tests (screening and confirming)
- 5. The trip itinerary
- a comprehensive algorithm defined for an individual institution with a timeline
- 6. Motivation
- I will get back to this
- 7. Outlook
- > What we need in the future?

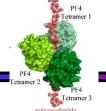
Diagnosis of HIT

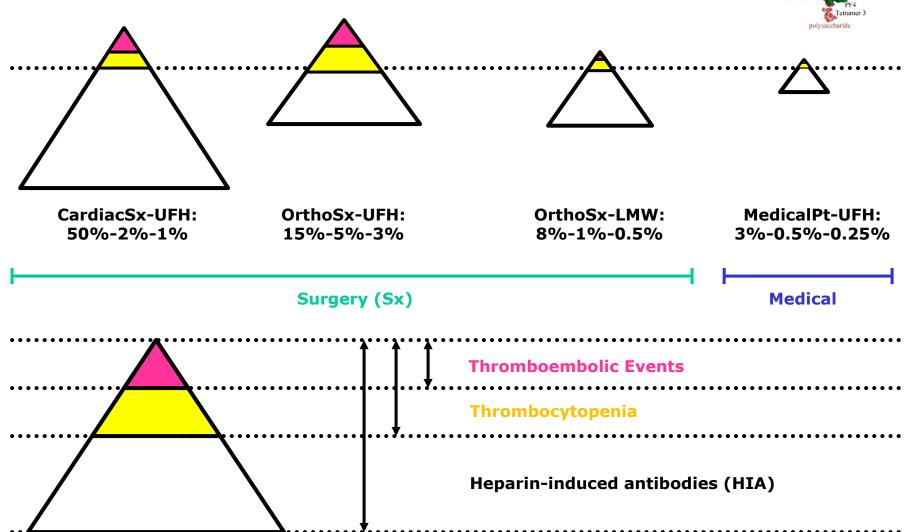


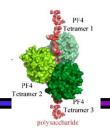
Aims of this talk:

- Provide useful information regarding HIT diagnosis
- Make you aware of (and fear) HIT overdiagnosis
- Convince you that you must establish your own local algorithm


1. Model (or world view)


Definition:


- "clinicopathologic syndrome" (T. Warkentin)
- Thrombocytopenia
 - absolute <150 G/I od 150 000/μI
 - relative >50% drop in platelet count
- Exposure to heparin (in the last 100 days) all heparins: UFH > LMWH; bovine > porcine
- Time course: platelet drop typically after 5-10 days (but "early onset" and "delayed onset HIT")


1. HIT Iceberg modell (~ Warkentin)

1. Over-Diagnosis of HIT

Acquired TCP in ICU setting^{1,2,3}

- acquired TCP (HIT+/?/?): occurs in 30-50% of patients
- true positive HIT (HIT+/+/+): occurs in 0.3-0.5% of these patients

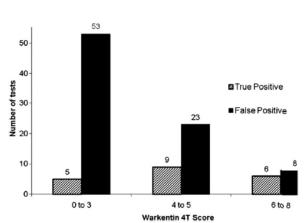


Figure 2. Heparin-induced thrombocytopenia (HIT) results, grouped by Warkentin score (0 to 3, HIT unlikely; 4 to 5, intermediate suspicion; 6 to 8, high suspicion) (x-axis), from 104 Warkentin tests ordered (y-axis) based on a clinical suspicion of HIT. True positive, lined bar, patients with SRA \geq 20%. False positive, black bar, patients with a serotonin releasing assay < 20%.

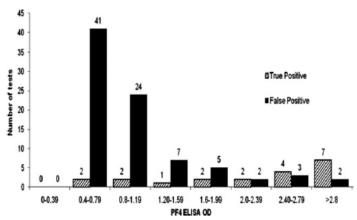
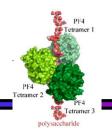



Figure 3. Heparin-induced thrombocytopenia (HIT) results, grouped by 0.4 optical density (OD) (x-axis), from 104 PF4 ELISA tests ordered (y-axis) based on a clinical suspicion of HIT. True positive, lined bar, patients with serotonin releasing assay (SRA) \geq 20%. False positive, black bar, patients with a SRA < 20%.

1. Over-Diagnosis of HIT

Acquired TCP in ICU setting^{1,2,3}

- acquired TCP (HIT+/?/?): occurs in 30-50% of patients
- true positive HIT (HIT+/+/+): occurs in 0.3-0.5% of these patients_

1:100!

Invited Editorial Focus © Schattauer 2011 993

Heparin-induced thrombocytopenia (HIT) in 2011: An epidemic of overdiagnosis

Adam Cuker

Department of Medicine and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

- 2000's educational activity +++ "Think of HIT", "Don't miss HIT"
- lack of specificity of diagnostic tests (many positives: true and false positives)
- tests can be very sensitive (to rule out disease)

2. Where do I start from? DD of acquired thrombocytopenia

1. Consumption TCP

- SIRS, Sepsis
- DIC (PT, aPTT, Fibrinogen, D-Dimere, Tc)
- Medications
- uncontrolled bleeding
- hemofilters, dialysis
- IABP
- TTP/HUS
- > ITP

2. Production TCP

- Medications (chemo therapy)
- Toxins (alcohol)
- BM infiltration a/o necrosis
- > (ITP)

3. Pooling TCP

Splenomegaly (portal hypertension)

Lars' rule of thumb (not-evidence based):

consider a HIT test (4T and ELISA/EIA),

when HIT is in #1 or #2 position of your DD

2. Where do I start from? Severity of acquired thrombocytopenia

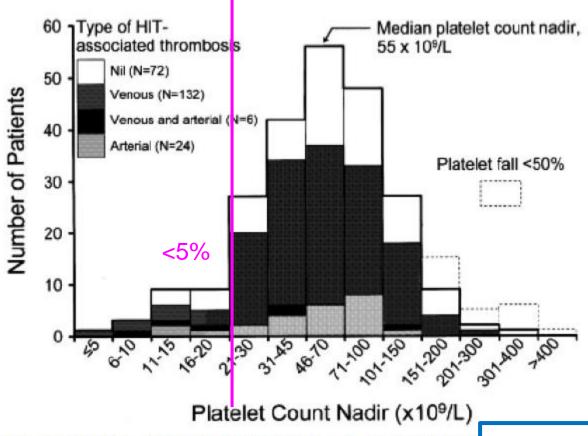


Fig. 1. Platelet counts at the time of diagnosis in 234 patients with heparin-induced t

LoE: Med

Lars' rule of thumb (partially-evidence based):

if you have acquired TCP <20 G/I HIT is unprobablle

(unless you have HIT plus another etiology)

3. Where do I want to go?

1. Fast and adequate diagnosis

true positives
HIT+/+/+
functionally active HIA

false positives
HIT+/+/-

true negatives
HIT+/-/- or nd

false negatives
HIT+/-/+

2. Efficient and safe treatment

true positives require alternative anticoagulation

false positives – cave: anticoagulation in acquired TCP

true negatives continue heparin

false negatives – cave: thromboembolic risk

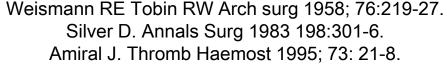
HIT status: 3 parmeters, each + or - HITacquired thrombopenia/HIA status/functional status

4. Tools

Methods of diagnosis

HIT definitions have varied over time

1957 <u>clinical</u> <u>salmon colored emboli or white</u> (arterial)


clots under heparin therapy

1980's <u>functional tests</u> (heparin-induced antibodies that

clot with normal platelets)

1990's antigenic tests (heparin/PF4/HIA complexes)

4. Tools: First step

Acquired thrombocytopenia

Relative drop by 30-50% (depending on publication)

Absolute local reference values! (often 150 G/l)

4. Tools: Second step - Scoring (pretest probability)

"Gut feeling"

- f.e. low/medium high
- few publications
- works astonishingly well (try yourself)

Hit Expert Probability Score (Cuker et al)

> 8 clinical and laboratory criteria

Simple scoring system (Messmore et al)

low or probable possibility ~ HIT manifestations

4T Score (Warkentin T or Greinacher A)

<4 low, 4-5 = medium, 6-8 = high pprobaility</p>

4. Tools: Sec

Table 1 Bayesian diagnostic algorithm for HIT that employs the 4Ts score and stratified interpretation of HIT ELISA, with recommendations for reasonable clinical actions based on post-test probability of HIT

bability)

"Gut feel Four-T score	Pretest probability of HIT	Anti PF4/H ELISA (OD)	Post-test probability of HIT	Recommendation
➤ f.e. low/ 0-3	1%	≥ 2.000 1.500–1.999	42% 7%	Order SRA* Order SRA*
few pub		0.600-1.499 < 0.600	1% 0	HIT ruled out†
works a: 4-5	10%	≥ 2.000 1.500–1.999	91% 44%	HIT ruled in‡ Order SRA*
Hit Exper		0.600-1.499 < 0.600	11% 0	Order SRA* HIT ruled out†
> 8 clinica 6-8	50%	> 2.000 1.500–1.999	99% 87%	HIT ruled in‡ HIT ruled in
Simple sc		0.600-1.499 < 0.600	54% 0	Order SRA* HIT ruled out/ Order SRA***

> low or pi

4T Score

> <4 low, 4

anti-PF4/H, anti-platelet factor 4/heparin; ELISA, enzyme-linked immunosorbent assay; HIT, heparin-induced thrombocytopenia; SRA, serotonin release assay; OD, optical density. We suggest that the final recommendation in this algorithm should be modified to 'Order SRA' (see Discussion). *Stop heparin and start alternative antithrombotic therapy for HIT pending SRA results. †No need for SRA. ‡Stop heparin, begin treatment, no need for SRA. *** Original algorithm recommendation: HIT ruled in, modified algorithm recommendation: Order SRA (see discussion).

Bakchoul T. Int Jnl Lab Hem 2014; 36:296; Raschke RA. JTH 2017; 15:1640-5.

4. Tools: Second step – Scoring (pretest probability)

"Gut feeling"

- > f.e. low/medium high
- few publications
- works astonishingly well (try yourself)

Hit Expert Probability Score (Cuker et al)

> 8 clinical and laboratory criteria

Simple scoring system (Messmore et al)

low or probable possibility ~ HIT manifestations

4T Score (Warkentin T or Greinacher A)

> <4 low, 4-5 = medium, 6-8 = high pprobaility

LoE: Med

4. Tools: 4T S

Suspicion of HIT based		Pre-test	Probability Score Cri	iteria
upon the "4 T's"	Score	2	1	0
Thrombocytopenia		nadir 20-100, or >50% platelet fall	nadir 10-19, or 30-50% platelet fall	nadir <10, or <30% platelet fall
Firming of onset of platelet fall		day 5-10, or ≤day 1 with recent heparin*	>day 10 or timing un- clear (but fits with HIT)	≤day 1 (no recent heparin)
Thrombosis or other sequelae		proven Drombosis, skin necrosis, or ASR†	progressive, recurrent, or silent thrombosis; erythematous skin lesions	none
Ther cause of platelet fall		none evident	possible	definite

Bitte bestimmen Sie bei HIT-Verdacht den Score. Wir wollen diesen Score prospektiv evaluieren, um die Diagnose einer HIT an Hand klinischer Symptome zu vereinfachen.

	,	Wa	hrscheinlichkeitskriterien	
der HIT-Verdacht basiert auf folgenden Kriterien	Score	2	1	0
Thrombozytopenie		niedrigster Wert ≥20 GPT und >50% Abfall	niedrigster Wert 10-19 GPT oder 30-50% Abfall	niedrigster Wert <10 GPT oder <30% Abfall
Tag des Auftretens des Thrombozyten-Abfalls		Tag 5-10 oder ≤1bei früherer Heparintherapie (innerhalb der letzten 30 Tage)	unbekannt, aber könnte zur HIT passen bzw. >Tag 10 bzw. ≤Tag 1bei früherer Heparintherapie (innerhalb der letzten 30 bis 90 Tage)	Tag <4 (keine frühere Heparintherapie)
Thrombosen oder andere Komplikationen		gesicherte neue Thrombose, Hautnekrosen, anaphylaktische Reaktion (anaph. Reaktion nach Heparinbolus)	Fortschreitende oder rezidivierende Thrombose, Verdacht auf Thrombose (noch nicht bestätigt) oder nicht nekrotisierende Hautläsionen	keine Komplikationen
andere Gründe für Thrombozytenabfall		keine	denkbar	definitiv
Wahrscheinlichkeits- Score				

*Warkentin TE, Seminars

treat isolated HIT (0.1 mg/kg/h, adjusted by aPTT); to avoid overdosing and anaphylaxis, it may be preferable to omit the bolus, and begin as i.v. infusion (except when facing life-or limb-threatening thrombosis); reduce dose for renal insufficiency Thromb Hemost 2004; 30:278 naparoid: usual i.v. bolus, 2,250 U (body weight 60-75 kg) followed by influsion (400 U/hr for 4 h, then 300 U/h for 4 h, then 200 U/h, adjusted by anti-factor Xa levels); this therapeutic-dose regimen is appropriate both for isolated HIT and for HIT complicated by thrombosis (though higher than approved dose in some jurisdictions); withdrawn from U.S. market (2002)

†† bivalinudin: no bolus, i.v. infusion 0.15 mg/kg/h adjusted by aPTT; limited experience (off-label)

fondaparinux: dosing for HIT not established; limited experience (off-label)

T delay coumarin pending substantial platelet count recovery (at least >100, preferably >150); begin coumarin in low doses, with at least 4-5 day overlap, stopping alternative anticoagulant when INR therapeutic for 2 days and platelets recovered

depending on physician confidence in the laboratory's ability to rule out HIT antibodies (usually, negative PF4-dependent enzyme-immunoassay and/or washed platelet activation assay performed by an experienced laboratory)

*** some thrombi may require special treatment, e.g., thrombectomy for large limb artery thrombosis

††† routine ultrasound of lower-limb veins recommended, since many HIT patients have subclinical deep-vein thrombosis (DVT)

Sytematic review and meta analysis of immunoassays for HIT

- > 2716 references
- 2261 screened
- 258 assessed for eligibility
- > 49 included
- Quadas-2 criteria

Table 2. Pooled diagnostic accuracy measures of different classes of immunoassays for diagnosis of HIT

	No. studies;				ı	.R	Posttest probability of pos. test result			Posttest probability of neg. test result		
Type of test		Statistical model	Statistical model Sens. (%)	Spec. (%)	Pos. (95% CI)	Neg. (95% CI)	1% Prev.	7% Prev.	15% Prev.	1% Prev.	7% Prev.	15% Prev.
Polyspecific ELISA												
LT ^{16,19,20,28,39} .	31; 8933	Unified†	96.7 (89.7, 99.0)	86.8 (82.0, 90.5)	7.3 (5.4-10.0)	0.04 (0.01- 0.12)	6.9 (5.1, 9.2)	35.5 (28.9, 42.9)	56.3 (48.9, 63.8)	0.0 (0.0, 0.1)	0.3 (0.1, 0.9)	0.7 (0.2, 2.1)
41,43,44,46,47,												
49-54, 59-61, 63,												
64,68,69,71,74,												
75,77-79												
IT ^{19,47,61,65,77}	5; 2334	Unified†	98.4 (90.8, 99.7)	94.9 (90.5, 97.3)	19.3 (10.4-36.0)	0.02 (0.00-0.1)	16.3 (9.5, 26.7)	59.2 (43.9, 73.0)	77.3 (64.7, 86.4)	0.0 (0.0, 0.1)	0.1 (0.0, 0.7)	0.4 (0.0, 1.7)
HT ^{19,39,47}	3; 1014	Fixed	15.0 (14.5, 15.5)	100 (99.3, 100)	73.4 (28.2-190.9)	0.3 (0.2-0.5)	42.6 (22.2, 65.9)	84.7 (68.0, 93.5)	92.8 (83.3, 97.1)	0.3 (0.2, 0.5)	22 (1.5, 3.6)	5.0 (3.4, 8.1)
		effects‡										
lgG-specific ELISA												
LT ^{19,20,44,55,63} ,	12; 3116	Unified†	98.3 (95.1, 99.4)	85.4 (78.2, 90.6)	6.7 (4.5-10.2)	0.02 (0.01-0.05)	6.3 (4.3, 9.3)	33.5 (25.3, 43.4)	54.2 (44.3, 64.3)	0.0 (0.0, 0.1)	0.2 (0.1, 0.4)	0.4 (0.2, 0.9)
64,66,69-72,77												
IT ^{19,20,77}	4; 2545	Unified†	91.2 (86.2, 94.5)	93.5 (89.1-96.2)	14.1 (8.1-24.5)	0.09 (0.05-0.15)	12.5 (7.6, 19.8)	51.5 (38.0, 64.8)	71.3 (58.9, 81.2)	0.1 (0.1, 0.2)	0.7 (0.4, 1.1)	1.6 (1.0, 2.6)
HT ¹⁹	2; 1958	Fixed	60.9 (59.7, 62.1)	99.4 (97.6-100)	97.0 (53.0-177.6)	0.4 (0.3-0.5)	49.5 (34.9, 64.2)	88.0 (80.0, 93.0)	94.5 (90.3, 96.9)	0.4 (0.3, 0.5)	2.9 (2.2, 3.6)	6.6 (5.0, 8.1)
		effects‡										
PaGIA												
LT ^{20,36,42,45,46} .	12; 2205	Unified†	96.5 (89.8, 98.9)	93.7 (83.1, 97.8)	15.3 (5.5, 42.3)	0.04 (0.01, 0.11)	13.4 (5.3, 29.9)	53.5 (29.3, 76.1)	73.0 (49.3, 88.2)	0.0 (0.0, 0.1)	0.3 (0.1, 0.8)	0.7 (0.2, 1.8)
53,58,64,68,70,												
72,75,79												
IT ⁶⁵	1; 1291	None§	98.9	95.9	24.1	0.01	19.6	64.5	81.0	0.0	0.1	0.2
Lateral flow	7; 1163	Unified†	98.4 (85.3, 99.9)	90.3 (84.4, 94.1)	10.1 (6.2, 16.5)	0.02 (0.00, 0.18)	9.3 (5.9, 14.3)	43.3 (31.9, 55.4)	64.2 (52.4, 74.5)	0.0 (0.0, 0.2)	0.1 (0.0, 1.3)	0.3 (0.0, 3.0)
immunoassay												
54-56,58,												
66,70,72												
PIFA ²⁸	1; 88	None§	0.0	70.1	2.3	0.5	2.3	14.8	28.9	0.5	3.6	8.1
Latex agglutination assay ³⁷	1; 119	None§	100.0	84.3	3.7	0.0	3.6	21.8	39.5	0.0	0.0	0.0
Polyspecific CLIA												
LT ^{37,38,57} .	7; 1008	Unified†	98.9 (92.7, 99.8)	85.6 (79.3, 90.3)	6.9 (4.7-10.0)	0.01 (0.00-0.09)	6.5 (4.5, 9.2)	34.2 (26.1, 42.9)	54.9 (45.4, 63.8)	0.0 (0.0, 0.1)	0.1 (0.0, 0.7)	0.2 (0.0, 1.6)
61,62,77	7, 1000	Office	30.3 (32.7, 33.0)	00.0 (70.0, 00.0)	0.5 (4.7-10.0)	0.01 (0.00-0.03)	0.5 (4.5, 5.2)	04.2 (20.1, 42.0)	34.3 (40.4, 65.6)	0.0 (0.0, 0.1)	0.1 (0.0, 0.7)	0.2 (0.0, 1.0)
IT ³⁷	2; 448	Fixed	97.9 (94.6, 100.0)	93.1 (90.4, 95.8)	13.5 (9.5-18.9)	0.0 (0.0-0.1)	12.0 (8.8, 16.0)	50.4 (41.7, 58.7)	70.4 (62.6, 76.9)	0.0 (0.0, 0.1)	0.0 (0.0, 0.7)	0.0 (0.0, 1.7)
"	2, 440	effects‡	37.3 (34.0, 100.0)	33.1 (30.4, 33.0)	13.5 (8.5-10.8)	0.0 (0.0-0.1)	12.0 (0.0, 10.0)	30.4 (41.7, 30.7)	70.4 (02.0, 70.3)	0.0 (0.0, 0.1)	0.0 (0.0, 0.7)	0.0 (0.0, 1.7)
HT ^{37,61,62,77}	5; 755	Unified†	98.3 (69.5, 99.9)	97.5 (94.4, 98.9)	39.5 (17.5-89.2)	0.0 (0.0-0.40)	28.5 (15.0, 47.6)	74.8 (56.8, 87.1)	87.5 (75.5, 94.1)	0.0 (0.0, 0.4)	0.1 (0.0, 2.9)	0.2 (0.0, 6.6)
IgG-specific CLIA	5, 755	Cianou	30.0 (03.0, 30.0)	07.0 (04.4, 00.0)	00.0 (17.0 00.2)	0.0 (0.0-0.40)	20.0 (10.0, 47.0)	74.0 (00.0, 07.1)	07.0 (70.0, 04.1)	0.0 (0.0, 0.4)	0.1 (0.0, 2.0)	0.2 (0.0, 0.0)
LT ^{37,57,61,77}	5; 741	Unified†	98.8 (69.2, 100.0)	94.6 (90.7, 96.9)	18.3 (10.6-31.5)	0.01 (0.00- 0.40)	15.6 (9.7, 24.1)	57.9 (44.4, 70.3)	76.3 (65.2, 84.8)	0.0 (0.0, 0.4)	0.1 (0.0, 3.2)	0.2 (0.0, 7.2)
IT ³⁷	2; 448	Fixed	78.6 (75.9, 81.2)	98.7 (94.6, 100)	42.3 (20.1-88.7)	0.2 (0.1-0.3)	29.9 (16.9, 47.3)	76.1 (60.2, 87.0)	88.2 (78.0, 94.0)	0.2 (0.1, 0.3)	1.5 (0.7, 2.2)	3.4 (1.7, 5.0)
	2,	effects‡	. 5.0 (10.0, 0.12)	23.7 (01.0, 100)	20 (2011 0017)	5.2 (6 6.6)		3.7 (002, 07.0)	23.2 (70.0, 07.0)	3.2 (0.1, 0.0)	(0.7, 2.2)	0.1 (1.1, 0.0)
HT ^{37,61}	3; 552	Fixed	74.2 (71.9, 76.5)	99.1 (95.4, 100)	47.8 (23.2-98.7)	0.2 (0.1-0.4)	32.6 (19.0, 49.9)	78.3 (63.6, 88.1)	89.4 (80.4, 94.6)	0.2 (0.1, 0.4)	1.5 (0.7, 2.9)	3.4 (1.7, 6.6)
	0,002	effects‡	(* * * * * * * * * * * * * * * *	22.1 (00.1, 100)	(20.2 00.7)	3.2 (0.1 0.1)	22.0 (10.0, 10.0)	. 3.0 (00.0, 00.1)	55.7 (55.7, 57.0)	3.2 (0.1, 0.4)	(0, 2.0)	5.4 (, 0.0)

4. Tools: Third step – antigenic tests

Meta analysis of rapid immunoassays for HIT

- > 171 references
- > 126 screened
- 63 assessed for eligibility
- 23 included
- Quadas-2 criteria

4. Tools: Third step – antigenic tests

Assay name	Abbreviation	Principle	Turn-around time	Antibody classes detected	Regulatory approval
Particle Gel Immunoassay	PaGIA	Red-dyed polymer particles coated with PF4/heparin complexes agglutinate at top of gel chamber if bound by anti-PF4/heparin antibodies	20 min	lgG1	Asia Australia Canada Europe
lgG-specific Chemiluminescent Assay	IgG-CA	 PF4-coated magnetic particles capture anti-PF4/heparin antibodies in sample Isoluminol-labeled secondary anti-IgG antibody is added and emits light with intensity proportional to concentration of anti-PF4/heparin antibodies in sample 	30 min	IgG	Europe
Polyspecific Chemiluminescent Assay	Poly-CA	Same as IgG-CA, but secondary luminescent antibodies are mixture of anti-human IgG, IgA, and IgM	30 min	IgG, IgA, IgM	Europe
Lateral Flow Immunoassay	LFIA	 PF4-polyanion complexes in buffer migrate through test strip and bind patient anti-PF4/heparin antibodies IgG anti-PF4/heparin antibodies are bound by immobilized anti-IgG antibody and form a red test line 	15 min	IgG	Europe
Latex Particle- Enhanced assay	HemosIL- Ab	 Latex beads coated with PF4/polyvinyl sulfonate bind anti-PF4/heparin antibodies Monoclonal anti-PF4/heparin antibody is added; if human anti-PF4/heparin antibodies are present, agglutination of latex beads is inhibited 	15 min	IgG, IgA, IgM	Europe
Particle Immuno- filtration Assay	PIFA	Blue PF4-coated microparticles aggregate if bound by anti- PF4/heparin antibodies; cannot pass through permeable membrane and yield no color change if positive	15 min	IgG, IgA, IgM	United States

PF4, platelet factor 4. 1PaGIA is technically able to detect IgG, IgM, and IgA antibodies, but the presence of anti-human-IgG in the gel card allows for preferential detection of IgG.

4. T

Index Test/ Reference	Setting (n)	Population (%)	Median age	No (%) female	Reference standard
Particle Gel Immunoa	ssay				
Alberio 2003 (13)	Switzerland (148)	NR	62.5 (F) 65 (M)	62 (43)	PAT > 50 % aggregation
Bakchoul 2009 (16)	Germany (500)	Surgical and Medical (NR)	NR	NR	HIPA (loss of turbidity in 30 min) AND 4T score ≥ 4
Bryant 2008 (17)	Australia (246)	CT surgical (43) Other surgical (8) Cardiac medical (22) Other medical (27)	62	92 (37)	SRA > 20 % release
Denys 2008 (19)	Belgium (102)	Surgical and Medical (NR)	NR	4 (40%) for 10 HIT+ pts – NR for all pts	Functional Flow (% platelet activation ≥ 2 times control)
Kapadia 2013 (21)	India (217)	Medical ICU and Surgical ICU (NR)	NR	NR	SRA > 20 % release
Legnani 2010 (24)	Italy (102)	Medical (49) Cardiac surgical (10) General surgical (32) Thrombosis treatment (29)	73	47 (46)	PAT > 20 % aggregation AND 4T score ≥ 4
Leroux 2014 (25)	France (124)	NR	NR	NR	SRA> 20% release AND ELISA absorbance ≥ 11.5% of control AND 4T score ≥ 4
Linkins 2015 (26)	Canada (526)	Cardiac surgical (23) Other surgical (23) ICU (51) Medical (48) Oncology (13)	66.5	256 (49)	SRA >50 % mean release AND positive in-house ELISA
Meyer 1999 (27)	Germany (109)	NR	NR	NR	HIPA (loss of turbidity in 30 min)
Nellen 2012 (29)	Switzerland (1291)	Medical (54) Surgical (24) ICU (20) OB/Gyn (1.2) Pediatric (0.5) Unknown (1)	68	566 (44)	PAT > 50 % aggregation
Pouplard 2007 (30)	France (213)	Medical (42) Cardiac surgical (14) General surgical (19) Other (25)	69	73 (34)	SRA > 20 % release
Sachs 2011 (31)	Germany (452)	NR	NR	NR	HIPA (loss of turbidity in 30 min) AND 4T score ≥ 4
Solano 2013 (32)	Australia (37)	Medical (59) Surgical (41)	63	14 (38)	Functional Flow (% platelet activation ≥ 2 times control)
Tawfik 2011 (33)	Egypt (50)	Medical (40) Surgical (60)	64*	19 (38)	SRA (radioactivity > 2-fold standard deviation of control)

4. '

Chemiluminescent Ass	Chemiluminescent Assays†										
Althaus 2013 (14)	Italy, England, Germany (448)	Surgical and Medical (NR)	NR	NR	HIPA (loss of turbidity in 30 min)						
Legnani 2010 (24)	Italy (102)	Medical (49) Cardiac surgical (10) General surgical (32) Thrombosis treatment (29)	73	47 (46)	PAT > 20 % aggregation AND 4T score ≥ 4						
Minet 2013 (28)	Belgium (45)	NR	NR	NR	SRA > 20 % release						
Van Hoecke 2012 (34)	Belgium (87)	Cardiac surgical and Medical (NR)	NR	NR	Functional Flow (% plt activation ≥ 2 times control)						
Vianello 2015 (35)	Italy (96)	Medical, orthopedic, surgical, ICU (NR)	NR	NR	HIPA (loss of turbidity) AND 4T score ≥ 4						

Table 4: Predictive values of rapid immunoassays for HIT.

De Cooman 2015 (18)				•		•		
Kolde 2011 (22) Kolde 2014 (23)	Assay	Assay PPV (95 % CI)			CI)	NPV (95 % CI)		
Leroux 2014 (25)	PaGIA		PaGIA 0.45 (0.33–0.			1.00 (0.99–1.00)		
IgG-CA		IgG-CA		0.49–0	.93)	0.99 (0.98-1.00)	١	
Sachs 2011 (31)	Poly-CA (0.42 (0.30-0.53)		.53)	1.00 (0.98–1.00)		
Vianello 2015 (35)	LFIA	,		0.41–0	.90)	1.00 (0.99–1.00)		
Latex Particle Enhano	gel immun	oassay; IgG-CA	, IgG-sp	ecific (chemilumines	ve value; PaGIA, particle scent assay; Poly-CA, w immunoassay.		
Althaus 2013 (14)	(119)		-					
Jourdy 2015 (20)	France (100)	NR		69 (F) 73 (M)	42 (35)	+/- HIPA (≥ 30% aggregation between sp taneous curve and 0.5 or 1IIU/mL curve ar Inhibited with 100 IU/ml UFH) +/- SRA > 20% release ‡		
Particle Immunofiltrati	on Assay							
Andrews 2013 (15)	United States (92)	MICU (100)		54 *	34 (37)	SRA > 20 % release AND 4T score ≥ 4		

^{*}Mean. † The first four studies investigated both the IgG-specific and polyspecific chemiluminescent assays; Vianello et al. investigated only the IgG-specific chemiluminescent assay. ‡ HIPA was only performed on patients with at least intermediate pretest probability; SRA was only performed as confirmatory testing in patients with discrepant immunoassay and HIPA test results. CT, cardiothoracic; ELISA, enzyme-linked immunosorbent assay; HIPA, heparin-induced platelet activation assay; ICU, intensive care unit; NR, not reported; PAT, platelet aggregation test; SRA, serotonin release assay.

4. To

Chemiluminescent Assa	ayst					_
Althaus 2013 (14)	Italy, England, Germany (448)	Surgical and Medical (NR)	NR	NR	HIPA (loss of turbidity in 30 min)	
Legnani 2010 (24)	Italy (102)	Medical (49) Cardiac surgical (10) General surgical (32) Thrombosis treatment (29)	73	47 (46)	PAT > 20 % aggregation AND 4T score ≥ 4	
Minet 2013 (28)	Belgium (45)	NR	NR	NR	SRA > 20 % release	12
Van Hoecke 2012 (34)	Belgium (87)	Cardiac surgical and Medical (NR)	NR	NR	Functional Flow (% plt activation ≥ 2 times control)	
Vianello 2015 (35)	Italy (96)	Medical, orthopedic, surgical, ICU (NR)	NR	NR	HIPA (loss of turbidity) AND 4T score ≥ 4	
Lateral Flow Immunoa	ssay					
De Cooman 2015 (18)	Belgium (153)	NR	NR	NR	Functional Flow CD62p	
Kolde 2011 (22)	Germany (60)	NR	NR	NR	HIPA (loss of turbidity in 30 min)	
Kolde 2014 (23)	Germany, Austria (211)	NR	NR	NR	HIPA (loss of turbidity in 30 min)	
Leroux 2014 (25)	France (334)	Medical (31) Cardiac Surgical (20) General Surgical (16) Other (33)	70	148 (44)	SRA> 20% release AND ELISA absorbance ≥ 11.5% control AND 4T score ≥ 4	rol
Sachs 2011 (31)	Germany (452)	NR	NR	NR	HIPA (loss of turbidity in 30 min) AND Inter- mediate-high 4T	
Vianello 2015 (35)	Italy (114)	Medical (39) Orthopedic (7) Cardiac surgical (20) ICU (17) Other (7)	70* (F) 62.2* (M)	60 (53)	HIPA (loss of turbidity) AND 4T score ≥ 4	
Latex Particle Enhance	d Assay					
Althaus 2013 (14)	Italy and England (119)	Surgical and Medical (NR)	NR	NR	HIPA (loss of turbidity in 30 min)	
Jourdy 2015 (20)	France (100)	NR	69 (F) 73 (M)	42 (35)	+/- HIPA (≥ 30% aggregation between spontaneous curve and 0.5 or 1IIU/mL curve and Inhibited with 100 IU/ml UFH) +/- SRA > 20% release ‡	
Particle immunofiltratio	on Assav					
Androws 2012 (15)	Hertard States (00)	sucu (son)	E4 *	24 /27\	CDA > 20.0/ mloaco	

n Quadas-2 Sensitivity Specificty NPV Althaus 119 Hi: 6/7 1.00 (0.83-1.00) 0.76 (0.66-0.84) 0.99 Jourdy 110 Hi: 6/7 1.00 (0.66-1.00) 0.91 (0.83-0.96) 0.99

Which test to use?

Study 1850 patients, single center, divided in 2 periods period 1: PaGIA (particle gel immune assay) and ELISA (IgG only) period 2 CLIA (lateral flow immune assay)

>	test	n	pos	%	cost/test
	PaGIA	892	281	31.5%	12.27
	ELISA	901	83	9.2%	26.17
	CLIA	1174	71	6.0%	37.51

Lars' rule of thumb (not-evidence based):
you want to chose a antigenic HIA test
that produces few positive results (<10%)
(less positives result in less false positives)

4. Tools: Third step – antigenic tests

IgG (specific) vs IgGAM (polyspecific)

Table 2 Study quality assessment by QUADAS-2 criteria

	Risk of bias				Applicability concerns			
References	Patient selection	Index test	Reference standard	Flow and timing	Patient selection	Index test	Reference standard	
Warkentin* 2013 [19]	Low	Unclear	Low	Low	Low	High	High	
Cuker 2013 [20]	High	Unclear	High	Low	Low	Low	High	
Galea 2013 [21]	Low	Unclear	Unclear	Low	Low	Low	High	
McFarland 2012 [22]	High	Unclear	High	High	Low	High	High	
Van Hoecke 2012 [13]	Low	Unclear	High	Low	Low	Low	High	
Morel-Kopp 2010 [23]	Low	Low	High	High	Low	Low	High	
Pouplard 2010 [24]	High	Unclear	Low	Low	Low	Low	High	
Bakchoul 2009 [25]	Low	Unclear	Unclear	Low	Low	High	High	
Warkentin 2008 [15]	Low	Unclear	High	High	Low	High	High	

^{*}Determined from data reported in original article, the PROTECT trial, and discussions with Dr. Theodore Warkentin.

Lars' rule of thumb (not-evidence based): 2 alternatives

only one test:

if more than one test

then use IgG specific test

then use IgGAM unspecific test next to IgG

LoE: Low

LoE: Hi

What is a good antigenic (or immunological) test

- sensitivity >99 (98)% negative predictive value (NPV) >99 (98)%
- Low absolute and relative number of positive tests few positives = few to follow up on with a functional test my view: should be below 10%
- Rapid turn around time (20-30 minutes! vs hours to days)
- Low absolute and relative number of false positive tests

Serotonin relase assay

- Functionally active HIA induce secretory response in healthy donor platelets
- Considered one of two gold standards

Heparin-induced platelet activation

A positive functional test is <u>sufficient condition</u> to prove the HIA's "danger"

 functional HIA (HIT+/+/+) require alternative anticoagulation (in therapeutic dose)

PS: the presence of an acquired TCP and HIA positivity (HIT+/+/?) are the <u>necessary condition</u>

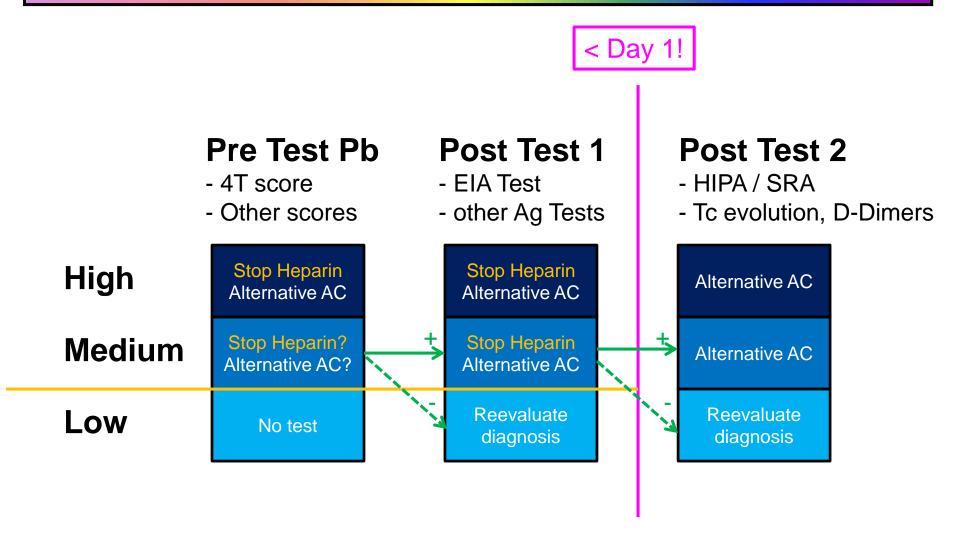
- n.b: <u>platelet count</u> should normalize after 3-5 days, same goes for <u>D-dimers</u>
- Not considered to be "gold standard"

5. The plan

Algorithm*:

- "unambiguous specifications for performing a task"*
- Common features

background starting point end point or goal equipment and tools periodic reevaluation! HIT pathogenesis acquired TCP preventing complications scores, tests, (medications)


motivation

abundance of examples/data from other fields indicating things start improving once you define a plan/algorithm

5. The Algorithm

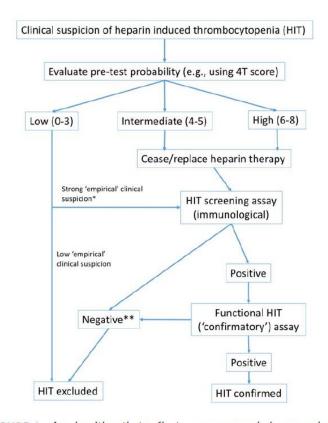
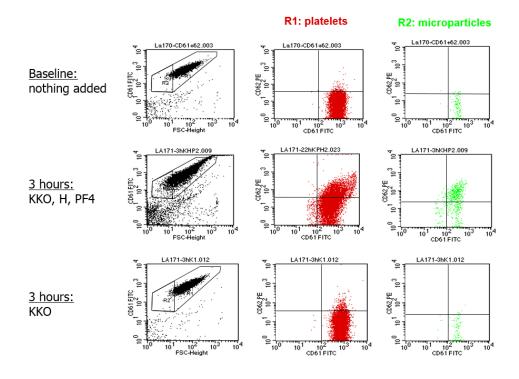



FIGURE 1 An algorithm that reflects a recommended approach to the investigation of individuals with potential heparin induced thrombocytopenia (HIT), based on local^{3,9} and other published experience. Notes: *Strongly recommended that the decision to perform HIT testing in cases with low 4Ts only progress after consultation with a local hematology expert. **Be aware that

Time limiting factor: functional tests:

- (1) or 3 to 5 days: this needs to be improved
- shorter delays might decrease mortality

Conclusions: HIT - a diagnostic journey

1. View of the world

"model"

- > pathogenesis of HIT: an immune mediated drug-induced thrombocytopenia
- beware of overdiagnosis

2. Starting point

> acquired thrombocytopenia

(median plt count 55 G/I)

3. Goal

positive patient outcome: safe and efficient

4. Tools

4T score, antigenic and functional tests

patient history, clincial findings, laboratory tests (screening and confirming)

5. The trip itinerary

> a comprehensive algorithm defined for an individual institution with a timeline

6. Motivation

> 365 day mortality↑; HIT+/+/+ vs con: ≈, HIT+/+/- and HIT+/+/nd vs con: ↑

7. Future

we need quicker confirmation!

Conclusions: HIT - a diagnostic journey

1. View of the world

"model"

- pathogenesis of HIT: an immune mediated drug-induced thrombocytopenia
- beware of overdiagnosis

2. Starting point

> acquired thrombocytopenia

(median plt count 55 G/I)

3. Goal

> positive

4. Tools

patient

Thank you, for Your attention!

5. The trip itinerary

> a comprehensive algorithm defined for an individual institution with a timeline

6. Motivation

> 365 day mortality↑; HIT+/+/+ vs con: ≈, HIT+/+/- and HIT+/+/nd vs con: ↑

7. Future

we need quicker confirmation!

